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ABSTRACT

People can innately recognize human facial expressions in unnatural forms, such as when depicted
on the unusual faces drawn in cartoons or when applied to an animal’s features. However, current
machine learning algorithms struggle with out-of-domain transfer in facial expression recognition
(FER). We propose a biologically-inspired mechanism for such transfer learning, which is based on
norm-referenced encoding, where patterns are encoded in terms of difference vectors relative to a
domain-specific reference vector. By incorporating domain-specific reference frames, we demonstrate
high data efficiency in transfer learning across multiple domains. Our proposed architecture provides
an explanation for how the human brain might innately recognize facial expressions on varying
head shapes (humans, monkeys, and cartoon avatars) without extensive training. Norm-referenced
encoding also allows the intensity of the expression to be read out directly from neural unit activity,
similar to face-selective neurons in the brain. Our model achieves a classification accuracy of 92.15%
on the FERG dataset with extreme data efficiency. We train our proposed mechanism with only 12
images, including a single image of each class (facial expression) and one image per domain (avatar).
In comparison, the authors of the FERG dataset achieved a classification accuracy of 89.02% with
their FaceExpr model, which was trained on 43,000 images.

Keywords Data Efficient Transfer Learning · Biologically Plausible Brain Mechanism · Facial Expression Recognition

1 Introduction

Our visual system has a remarkable property: We can innately recognize facial expressions on non-human faces, such
as those of cartoon characters. Facial expression recognition (FER) is critical for human social interactions [1].

While there have been few studies specifically investigating cross-species facial perception [2, 3], there exists a
significant body of work on facial perception (e.g., [4, 5]) within a variety of domains, including caricature drawings
[6, 7], emoticons/emojis [8], cartoon characters [9, 10], as well as studies on the phenomenon of pareidolia (the
perception of faces on arbitrary objects)[11]. These studies indicate that human face perception generalizes strongly
even to previously unencountered, non-human head shapes. Figure 1 illustrates our proposed task of transferring facial
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Figure 1: Examples of the portraits that form our basic face shape (BFS) dataset showing seven different expressions on
the three basic head shapes-what we refer to as our source and target domains. Our task involves the classification of
facial expressions across unseen target domains from a source domain (outlined in blue) using only a single image from
the target domain as a reference (outlined in red and green).

expression recognition from one source domain (e.g., human head shape) to other target domains (e.g., monkey, cartoon)
using the least possible amount of images.

Despite the recent advances in machine learning, tested state-of-the-art FER models do not generalize (transfer) to, e.g.,
cartoon faces (see results on our developed BFS dataset 6.2). There are several possible explanation for these results.
CNN architectures are know to have strong bias towards textures [12, 13]. We argue that CNNs rely too heavily on
local features which outweigh global information to achieve our task. More recent computer vision models, such as
vision transformers (ViT) [14], partially solve the local issue able to access any part of an image at any given layer.
Nonetheless, they require large amounts of data to learn the spatial embedding.

In this work, we seek to explore a mechanism well-known in neuroscience: norm-referenced encoding (NRE) [15, 16].
In this approach, facial identities are encoded in terms of differences tuning vectors relative to an average-norm-face
(Figure 2A). We aim at demonstrating its benefits in computer vision. By extending the encoding to multiple domains
and developing a machine-learning model exploiting this encoding, we make a step forward towards an end-to-end
framework. The implicit bias of this encoding enables our model to transfer knowledge with high data efficiency. Our
model generalizes to new domains using a single image.

Contributions. (1) We extend the biologically-plausible Norm-referenced encoding to multiple domains. (2) We
develop an architecture to exploit the multi-domain Norm-referenced encoding as a step towards an end-to-end
framework.(3) We provide a dataset to study transfer learning with corresponding facial expressions using fundamentally
different head shapes and different levels of expression intensity. (4) We test our model on a publicly available dataset
and illustrate the high data efficiency, robust transfer learning capability, and interpretability of the proposed method.

2 Background

Norm-referenced encoding (NRE) is a classical principle in neuroscience for face identity representation. The key idea
of NRE is that the face identity is encoded by a difference vector relative to a norm stimulus, typically the average face.
The direction of this difference encodes facial identity, while its length represents the distinctiveness of the face relative
to the average face (Figure 2A).

Electrophysiological evidence supports this encoding principle [16, 17] (related neural model have been proposed [18])
and recordings show that the tuning relative to the norm face emerges more slowly than the absolute encoding, about
100 ms after stimulus presentation [17]. These results suggest a fast process that exploits encoding in absolute space
[19] and a slower one that realizes an encoding relative to the average face, potentially mediated by recurrent feedback
[20].

Let s be a vector that represents a face stimulus in an appropriate feature space. Then the difference vector is defined by
d = s − r, where r is a norm or reference vector—classically, the average face computed by averaging the feature
vectors of a large number of faces.

2



Running Title for Header

Reference r

Identity 1

Identity 2

Tuning Vector

Identity Level

Ac
tiv

ity

Identity Level

Ac
tiv

ity

Identity 1 Identity 2
A B

n1

n2

d
Stimulus s

Figure 2: A) A schematic representation of norm-based encoding. The sketch displays two identities in feature space
and their respective tuning vectors n1 and n2. The stimulus s is encoded by its position relative to the reference r
through the difference vector d = s− r. B) Read-out activity vi for the input stimulus s for the two identities. The
activity is given by vi = dTni and thus grows linearly in the identity level ‖d‖. The slope is given by dTni/‖d‖,
meaning d = ni yields the identity function.

The response of a face-encoding neuron is computed as the scalar product of the difference vector d of the actual
stimulus and a unit vector ni (tuning vector) that determines the preference of the neuron in terms of face identity:

vi = dTni. (1)

The neuron would respond maximally to face stimuli for which the associated difference vector d is collinear with the
vector ni. The length of the difference vector ‖d‖ encodes how characteristic the face is for a specific facial identity
(called ’identity level’ in psychophysics) (See Fig. 2B). The same encoding principle can be transferred to facial
expression recognition [21]. Here, the norm stimulus is the neutral expression, the vectors ni encode the expression
types, and the length of the difference vector represents the expression strength of the face.

3 Multi-Domain Norm-Referenced Encoding
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Figure 3: Schematic representation of the classification of two expressions (E1 and E2) in a 2D face space, presented
on two different basic head shapes. N1 and N2 represent the "norm faces" (neutral expressions) relative to which the
individual expressions are encoded. A) A linear classifier class boundary indicated by the dashed line results in the
correct classification of the expressions of the first head shape (N1), but fails on the second head shape (N2). B) A
norm-referenced classifier, which transfers the tuning vectors n1 and n2 from the first head shape N1 to the second
head shape N2 accomplishes correct classification without retraining the classifying neurons. C) An example of a
norm-referenced classifier in a poorly-chosen feature space, resulting in misclassification for the second head shape.

NRE is thus an intuitive and powerful model to encode faces and facial expressions. Here, we propose to extend
the model to multiple reference frames, referring to it as multi-domain norm-referenced encoding (MD-NRE). We
hypothesize that utilizing multiple norm-references might be a highly data-efficient transfer-learning approach for
multi-domain FER.

Consider the problem of classifying facial expressions E that correspond to feature vectors s. Let N denote the domain
(head shape) from which s was drawn. For each domain, we consider a domain-specific reference vector rN. Finding
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Methods Encoding Multi-dom. Eff. transfer
Lin. Classifier absolute X 7
NRE relative 7 7
MD-NRE relative X X

Table 1: Summary of the key differences between the classical linear classifier, the previous norm-referenced encoding
model, and the current one. Multi-Dom = Multi-domain, Eff. Transfer = Efficient transfer.

rN is part of the learning procedure. The MD-NRE assumes that the distribution of E only depends on the domain N
through the difference vector between the feature vector s and the domain-specific reference. More specifically,

p(E|s) =
∑
N

p(E|s, N)p(N |s)

=
∑
N

p(E|s− rN)p(N |s).
(2)

This assumption breaks the learning process down into two parts: learning to infer the domain from the feature vector,
and learning to infer the expression from the difference vector d = s− rN. This decomposition allows us to learn the
distribution of E for all domains while only training on data from one domain.

Fig. 3 illustrates the situation. In a two-dimensional feature space, we aim to classify the expressions E1 and E2 for
two different head shapes. The neutral expressions for the two head shapes are denoted as N1 and N2. Panel A shows
the situation using a linear classifier that separates the two expressions correctly for only one head shape. Suppose the
effect of changing the basic head shape is a collinear translation of all feature vectors in the feature space. Even if the
translation vector is the same for all tested expressions, the classifier fails to classify the two expressions correctly for
the second head shape. However, this is different when MD-NRE is applied. As illustrated in panel B, assume that
the directions of the difference vectors between the expressions (E1

1 , E1
2 and E2

1 , E2
2 ) and the corresponding neutral

reference face vectors (N1 or N2) are the same for the two head shapes. Then MD-NRE, which uses the same tuning
vectors n1 and n2 for the two head shapes, would show perfect transfer of expression recognition from the first head
shape to the second. Therefore, training the system on the first head shape and knowing the feature vector of the second
neutral (norm) face (N2) allows a correct classification of the expressions on the second head shape without the need
for explicit training of all expressions for the second head shape. Therefore, if done correctly, the MD-NRE promises
great data efficiency in generalizing to new domains. In addition, the length of the difference vectors covaries directly
with the expression strength, which is useful for many technical applications that exploit expressiveness.

Of course, the previous assumption that the tuning vectors n0 and n1 remain similar for different head shapes is far
from trivial to achieve. It depends critically on the embedding of images in the 2D feature space. Panel C shows a
hypothetical example where the tuning vectors change direction. Here the expressions for the first head shape do not
help the classification of the expressions for the second. Such misalignment of the corresponding tuning vectors will be
particularly apparent if the embedding feature space contains many dimensions unrelated to the expression classification
task. Using, for example, texture-sensitive features, one would expect strong and unsystematic changes in the tuning
vector moving from a human to a non-human head, which likely outweighs the expression-specific changes.

To overcome this challenge, we propose to add three mechanisms to NRE. 1) Use multiple domain-specific reference
vectors. 2) Treat each reference vector as an updatable set of parameters. 3) Construct the relative encoding with a
two-stream pipeline. Table 1 summarizes the key aspects of our proposed model. A strong assumption, and limitation,
of the model is to assume that the reference vectors for each domain are given. In other words, it is assumed that the
model observes one image from each domain during training.

4 Related Work

Facial Expression Recognition: There are numerous publicly available human facial expression recognition (FER)
datasets in computer vision (e.g. AffectNet [22], FER2013 [23], CK+ [24], KDEF [25]) as well as datasets of cartoon
characters (FERG dataset [26]). FER studies typically aim to reach the best classification on one or several of these
datasets [27, 28, 29, 30, 31]. Others investigate transfer learning (domain adaptation) [32, 33] from a source (human)
to a target dataset (another human). To the best of our knowledge, only one study experiments with transfer learning
in a cross-species FER experiment between humans (JAFFE, KDEF) and cartoon faces (FERG) [32]. However, this
method did not investigate data efficiency and employs an alternative method, learning a mapping function from the
source and target datasets to a common feature space. Constructing such a mapping function bears greater resemblance
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to the task of facial retargeting [34, 35]. Facial retargeting aims at learning a mapping function which links the same
facial expressions across different head shapes (domains) in the context of facial animation. As such, data-efficient,
cross-species FER generalization is not well studied.

Data Efficient Transfer Learning: Developing machine learning models that transfer knowledge is a critical goal in
the field. There are many generalization-related research topics such as transfer learning, zero-shot learning, meta-
learning, and causal representational learning. In our study, we define our task as falling between domain adaptation
(DA) [36] and domain generalization (DG) [37]. The goal of domain generalization is a good performance on novel
domains by models trained on one or several distinct, but related domains. As in DG tasks, we assume that our training
and testing sets are not identically and independently distributed (i.i.d.).

A key difference between our approach and DG is that, as DA, we do not consider the target domain to be entirely
unknown. Instead, we allow our model to see one training example per target domain. We achieve high data efficiency
by introducing domain-specific inductive biases, which we refer to as our reference vectors. As the reference vectors
are updatable parameters of our model, our approach falls under the algorithm strategy in few-shot learning [38], which
means that existing parameters are refined during domain transfer.

Morphable Models: Early computational vision work proposed encoding shapes in vector spaces relative to a reference
or norm pattern [39, 40]. The construction of vector spaces that parameterize properties of image classes is standard in
computer graphics, particularly for faces [41, 42, 43]. 3D morphable models (3DMM) are powerful tools to construct,
animate, and transfer facial expressions between avatars. 3DMMs learn to separate shape from appearance variation
and construct a low-dimensional prior of a basic head shape. As such, they are intuitive and help in a natural way to
disentangle shape changes that carry semantically critical information, such as expression or identity from the basic
shape of the head.

5 Model Architecture

To exploit the multi-domain norm-referenced encoding (MD-NRE), the developed model must fit several constraints.
First, it needs to construct representations that preserve the tuning vectors across domains. Once the reference and
tuning vectors are trained, we need to update the specific reference vectors to encode the inputs relative to it and project
the resulting difference vectors onto the tuning directions. Therefore, an architecture with two streams is required: one
that updates the reference vector, and one that computes the difference vectors and their projection onto the tuning
vectors ni.

A straightforward method for a FER task would be to use pre-trained facial landmark detector methods. Tracking
the landmarks’ displacement for facial expression features would directly output a 2D representation such that the
displacement is invariant to face shapes and textures. Such representations support generalization for frontal to
moderately rotated views. However, tested state-of-the-art facial landmark detectors [44, 45] yield poor results on
non-human face (see supplementary materials for more details on the tested landmark estimation models). Moreover, a
simple facial landmark detector would not be sufficient to exploit MD-NRE. In order to compute the outputs of the
encoding neurons, the norm-referenced neurons need two inputs: one is the reference vector rN, and the other one is
the learned preferred tuning direction n. To transfer between expressions on different head shapes, we need a second
stream that determines the type of the head and the associated reference vector.

Figure 4 illustrates the developed model architecture. The model consists of three major components: first, a standard
convolutional neural network (CNN) for the extraction of image features. Second, a module that selects task-relevant
features and computes the difference vectors between the input image and the corresponding norm stimulus. Finally,
our proposed high-level readout layer.

A given input image x is fed through the CNN to obtain a representation in terms of hidden units of the network.
We reduce the dimension of the representations by applying a Network Dissection technique [46]. The output of the
dimensionality reduction is then used as input for the landmark detector. The challenge for the landmark detector is to
provide position shifts that are similar for expressions presented on different head shapes. We solved this problem using
the two-stream pathway shown in Figure 4. The FR pathway enables the relative encoding of the absolute landmark
positions estimated by the FER pathway. The output of the landmark detector is a set of positions of landmarks
l. This set of vectors constitutes the latent space in which the MD-NRE read-out operates. Further information on
implementation and training of the feature extraction, feature reduction and landmark detection are provided in the
supplementary materials.
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Figure 4: Model architecture comprising three main components: a CNN for generic feature extraction, a module
for feature reduction and the construction of robust features, and a read-out network / classifier module. The feature
reduction transforms the latent space of the VGG19 model into a sparse set of facial landmarks. The dimensionality
reduction module comprises two pathways. The FR (facial recognition) pathway acts as a reference vector selector and
updates the reference parameters with the face position and scale. The FER (facial expression recognition) pathway
outputs the absolute position of facial expression landmarks and computes the tuning vectors of the multi-domain
norm-referenced encoding (MD-NRE). The role of the FER pathway is to construct a shape- and texture-invariant facial
expression landmark detector. The MD-NRE read-out layer encodes the landmark position relative to the selected
reference vector and projects it onto the corresponding tuning vector ni.

5.1 Norm-Referenced Encoding and Classifier

The proposed classifier is inspired by results on face-selective neurons in the visual cortex [18, 16]. We assume that
the norm vector r has been learned for the individual types of head shapes. The activity vm of the detector neuron for
expression m, summing over the different landmarks l, is given by the function

vm =
∑
l

[
dT
l nl,m

]
+
. (3)

Here dl = sl − rl is the two-dimensional difference vector for the l-th face fragment. The term in the bracket measures
its similarity to the learned direction-tuning unit vector nl,m. The output vm then depends linearly on the length of the
difference vector, which varies monotonically with expression strength. This type of tuning matches the tuning function
of neurons in the IT cortex for identity coding [16]. It turns out that a summation of the tuning function outputs over
the different fragments provided the most robust results. We obtain the final classification result by determining the
norm-referenced neural unit with the maximum output m̂ = argmaxm vm.

6 Results

In the following, we focus on the multi-domain norm-referenced encoding (MD-NRE) and regard its input as a general
facial landmark detector with two key characteristics. First, we use 10 landmarks for the construction of the reference
and the difference vectors. Second, we use only three landmarks to determine the type, position, and size of the face.
These parameters are used to construct the reference vector for the appropriate head shape. Further details about this
architecture and its training can be found in the supplementary materials.

The training of this architecture requires two steps: a first one that trains the reference vectors for all head shapes, and
a second one that determines the tuning vectors ni. This training can be accomplished with one image per category
(e.g., happy, surprised, etc.) to train each tuning vector, and one image per domain (e.g., human, monkey) to train each
reference vector.

We first employ our own dataset to demonstrate domain generalization of facial expression recognition (FER) between
different head shapes. Specifically, the proposed approach accomplishes high performance in transfer learning, training
the system on facial expressions from one head shape only, and testing on other head shapes. We then test our method
on a publicly available, larger dataset to investigate its data efficiency.
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Model Type Dataset #im Acc
SVM-LBP [48] SVM BFS 9 14.3
ResNet50v2 [49] CNN Affectnet 280k+ 52.4
CORNet-S CNN Affectnet 280k+ 63.1
DAN [50] CNN AffectNet 440k 37.4
EfficientFace [51] CNN AffectNet 440k 33.8
MD-NRE BFS 9 100

Table 2: Classification accuracies (%) for our MD-NRE model and different standard CNN architectures. Letters refer
to the training condition with: B (only BFS), A (only AffectNet) and C (AffectNet + BFS)

We also performed ablations studies to investigate the robustness of MD-NRE mechanism against occlusion, and the
use of human facial landmark detectors. Further, we compared our MD-NRE model to the NRE without built-in
domain transfer capabilities. Results shows that our architecture shows robustness to occlusion and sub-optimal latent
spaces. Further, the inclusion of multiple domain references is key for good performance. Details can be found in the
supplementary material.

6.1 BFS Dataset

A valid question is whether the chosen input levels derived from a VGG19 architecture enable robust and precise
tracking of facial landmarks across all head shapes. CNN architectures are known to be biased toward textures [12, 13].
Our choice to use the network dissection technique [46] (see supplementary material) to filter non-face-relevant feature
maps does not necessarily remove texture bias. It is unclear a priori whether the remaining feature maps from our
read-out layer yield reliable activity patterns for our landmark detectors.

Therefore, we decided to create our own dataset using computer graphics to match facial expressions across different
basic head shapes (contribution 3). We selected a human, a cartoon, and a monkey avatar as three basic head shapes and
called it the BFS (Basic Face Shapes) dataset. The main goal of this dataset is to investigate the architecture design of
our model. Therefore, the specificity of the BFS dataset is to ensure that the displacement of the landmarks remains
invariant across all the different head shapes and textures. In total we created 15 identities (5 identities per basic face
shape) displaying 7 expressions (see Figure 1), resulting in a total of 105 images. All face shapes were animated using
the same facial expressions. Correspondence between the meshes of the different avatar types was established by
interpolating the meshes of the monkey and the cartoon avatar to match exactly the polygonal structure of the human
mesh. Once this correspondence is established, it is straightforward to animate the avatars with the same expressions.
(See the supplementary materials for more details.)

6.2 Domain Generalisation

Using our BFS dataset 6.1, we test the MD-NRE for domain generalization. In this test, we learn facial expressions
from a source domain (human) and transfer the tuning vectors to the other domains by updating the reference frames.
Here, domains refer to each basic head shape of the BFS dataset (human, monkey, and cartoon). As such, our model
has never seen any expressions from the target domains. Nonetheless, the model has knowledge that the target domains
exist from the training of the reference frame.

To conduct our test, we select one image of each expression displayed on the human avatar (blue rectangle from Figure
1). We use three images, one per domain, to train the reference vectors, and 7 images, one per category, to train the
tuning vectors. However, as the neutral expression on the human identity is already selected for the training of the
human reference vector, we effectively add only 6 images to the training set. Consequently, we train the classifier using
a total of 9 images.

Nonetheless, it is fair to wonder if our BFS cross-domain dataset is too similar to human head shapes. The question
emerges whether state-of-the-art FER models can accurately classify our non-human head shapes. Therefore, we test
the performance of multiple available FER architectures and trained a CORNet-S model for comparisons (as it is argued
to be a closer brain-like architecture) [47]. (See the supplementary materials for implementation and training details.)

We obtain perfect classification accuracy (100%) for the test dataset. This implies a perfect transfer of the learned
expressions from one human identity to all the other head shapes, without a need for training of the expressions on
the non-human head shapes (Table 2). This result proves our assumption that facial expression tuning vectors can be
transferred across different head shapes using only a single neutral face shape within an appropriate feature space. It
also proves that our model reliably tracks the position of facial landmarks independently of face shapes and textures.
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Model BFS-L Human Monkey Cartoon
CORnet-S 46 62.5 44 32
MD-NRE 78 92 68 76

Table 3: Classification accuracy (%) for our MD-NRE and the CORnetS-A on the expression strength level test (BFS-L)
for each head shapes.

Table 2 shows that none of the other models performed as well as ours on the transfer learning task. The CORNet-S
model reaches the best accuracy with a limited performance of 63.1%, and the SVM model performs the worst, only
reaching chance level classification performance (14.3%). See the supplementary materials for a detailed discussion of
this poor result.

6.3 Analogous Encoding

The second test aims at assessing the second assumption of the model. Contrary to the output layers of typical DNN
classification models, which return estimates for class probabilities (softmax readout), face-selective cortical neurons
show an almost linear dependence of activity on the distance of the face from the average face [16, 17, 20]. Likewise,
in our architecture, the output variables vm depend linearly on the length of the difference vectors d, which covary
with expression strength. Such analogous encoding is especially interesting for social interaction, where even small
and subtle facial movements might be used to perceive a person’s intent. This principle might underlie our ability to
perceive complex and subtle facial movements such as a smirk. Furthermore, encoding of expression strength seems
useful for different technical applications. One example would be a human closed-loop interaction system, such as
using facial expression recognition data to drive computer animations, where expression strength is often modeled by a
superposition of action units or blendshapes. In addition, expression strength influences the reliability of expression
categorization: weak expressions are more difficult to classify than extreme expressions.

We test the linearity of the encoding by leveraging our BFS dataset to simulate expression strength for each basic head
shape. For this purpose, we extended the BFS dataset by adding versions of all expressions with three extra levels
(25%, 50%, and 75%) of expression strength. These intermediate levels were created by blending (linearly scaling the
displacements between the corresponding mesh polygons between the neutral and the 100 % expressive face for the
same head shape). (See the supplementary materials for an illustration.) The resulting dataset (BFS-L) has a total of 75
testing images. We use the same 9 training images as in the previous validation experiments.
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Figure 5: Readout values of the multi-domain norm-referenced encoding (MD-NRE) and the CORnetS-A model as a
function of the expression strength level for each expression on the Human Avatar. The red dashed line corresponds to
perfect linearity.
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Models First Optimized # im
Train Test Train Test

DeepExpr [26] - - - 89 43k+
ACNN [52] - - - 99.3 43k+
VGAN [53] - - - 100 43k+
MD-NRE-I 73.1 73.1 92.3 92.2 12
MD-NRE-Aia 76.7 76.4 84.6 84.2 12
MD-NRE-Bonnie 70.4 70.4 85 84.4 12
MD-NRE-Jules 80.6 79.9 80.5 79.7 12
MD-NRE-Malcolm 73.3 73.3 80.4 80 12
MD-NRE-Mery 71.6 71,1 81.9 82.2 12
MD-NRE-Ray 66.6 66.5 71.9 71.6 12

Table 4: Classification accuracy (%) for our MD-NRE models on the FERG dataset and the reported test classification
accuracy from different FER models trained on the FERG dataset

Figure 5 compares the readout activity values of our MD-NRE and the CORNetS models (the best CNN model from
the previous experiment). While both models show a monotonic increase of the output variables with the expression
strength, our model shows greater linearity. Moreover, Table 3 shows that the classification accuracy (collapsed over all
tested expression strength levels) of our model outperforms the CORNetS architecture, indicating higher robustness to
variations of expression strength. Nonetheless, as expected, the overall performance for the MD-NRE model is reduced
compared to using only the 100% expression strength test images (Table 2). This accuracy reduction is mainly caused
by a reduced performance on the weaker expression strength level images (see supplementary materials).

6.4 Efficient Learning

The third test aims to scale up the model and to conduct a first benchmark test of our approach with the literature. We
select the FERG [26] dataset which consists of stylized comic characters with annotated facial expressions. The FERG
dataset is suitable for our simple landmark detector as the pose and the illumination are fixed. The dataset contains
55,767 images across 6 different head shapes and 7 expressions. The dataset is split into a training set (43,767), a
validation set (6k), and a test set (6K).

To apply our MD-NRE, we train a reference vector for each avatar identity and test our model’s learning efficiency.
This task is thus an assessment of the benefit of using reference frames as inductive bias. Nonetheless, the variance of
the head shapes among the avatars of the FERG dataset is arguably higher than among human identities. Therefore, we
also test our method to transfer facial expressions from a single avatar head to the others.

We use 12 images to train our models. One neutral pose for each avatar type (6 images) to train the reference vectors,
and one for each expression (7 images) to train the tuning vectors. As before, the neutral expression is already included
in the set used to train the reference vectors.

We test the efficiency of our model using two approaches. First, we train our model as a standard FER approach.
Therefore, the tuning vectors are trained independently of the avatar type (referred to as MD-NRE-I). Here the model
can select any expression that might help classification accuracy. Second, we train our classifier using a transfer learning
task by using only a single avatar to train the tuning vectors, referred to by MD-NRE-<avatar_name>. Here, the
models learn facial expressions from the subset of images belonging to the selected avatar.

In addition, we select the training expressions in two ways: In one condition, indicated by First, we use the first picture
of the relevant expression class for training. This has the disadvantage that this first picture might not be the most
typical one for that expression category. To remove this limitation, we perform a second set of tests where we choose for
each class an optimized template stimulus (indicated by Optimized). This stimulus is determined by iterating through
the training dataset and retaining the class-specific training picture that results in the highest training accuracy after a
single training epoch.

Table 4 shows the accuracy of the classifications for the different training schemes. Using the first images in the dataset
for each class (condition First), we obtain a testing accuracy of 73%. This was in the range of the accuracies for
training with individual avatars, which range from 66% to 79%. While these results are not state-of-the-art (100%
reported by [53]), this test proves that our model can cope with a larger dataset. When the model have access to every
domain (MD-NRE-I), the test accuracy reaches a value of 92.15%, which exceeds the accuracy (89.02%) reported in
the original paper on the FERG dataset [26]. Moreover, the best transfer learning model (MD-NRE-Bonnie) reaches
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84.42% accuracy. This is an encouraging transfer learning result for a classifier trained with only 12 images, and where
all the expressions are from a single avatar type.

7 Conclusion

We present a proof-of-concept study that tests the use of a biologically inspired principle: norm-referenced encoding
(NRE) for multi-domain transfer in facial expression classification. There is strong evidence for such representations
in the brain (e.g. [16, 15, 17, 54, 55]. We hypothesize that this encoding principle explains how the human brain
accomplishes high data-efficiency in transfer learning. We validate our hypothesis by illustrating how our model
recognizes facial expressions on novel head shapes, an easy task for humans.

We demonstrate that this encoding principle can be implemented in the context of a deep network architecture that
consists of two streams, one that identifies the type of the head shapes and the corresponding reference vectors, and a
second one that computes the difference vectors and the activity of the NRE encoding neurons. The input of these two
pathways is given by a landmark detector.

We also demonstrate its linear dependence on deviation from the reference frames makes this encoding especially
interesting for tasks requiring a strong estimate of confidence, e.g., human social interactions, and medical applications.
Facial expression perception is a prime example: even subtle facial cues might reveal information about emotion. And
in many social situations, the expressiveness about the displayed emotion has important behavioral consequences (e.g
faked vs. real smiles, etc.).

A major goal of our work is to verify if a principle that seems relevant in neuroscience might be helpful in computer
vision and machine learning, especially for cases in which large amounts of training data are not available.

We hope that this work demonstrates the value of biologically inspired methods in machine-learning generalization
across different domains. We acknowledge that substantial additional work is required to make these methods applicable
to a wider spectrum and more complex machine-learning problems. Nonetheless, this work is a step towards a more
generic end-to-end machine learning model exploiting NRE.

Acknowledgments

We would like to thank Michaël Morret, Marie Stettler, Luigi Gresele, Julius von Kügelgen and Jesse St. Amand for
their general advice and feedback on the paper.

This was was supported in part by the European Research Council ERC 2019-SYG under EU Horizon 2020 research
and innovation programme (grant agreement No. 856495, RELEVANCE). Martin Giese was also supported by BMBF
FKZ 01GQ1704 and BMG: SSTeP-KiZ (grant no. ZMWI1- 2520DAT700). The authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Michael Stettler and Alexander Lappe.
Nvidia Corp.

References

[1] Edward O Wilson et al. The social conquest of earth. WW Norton & Company, 2012.

[2] Qi Zhu, Koen Nelissen, Jan Van den Stock, François-Laurent De Winter, Karl Pauwels, Beatrice de Gelder, Wim
Vanduffel, and Mathieu Vandenbulcke. Dissimilar processing of emotional facial expressions in human and
monkey temporal cortex. Neuroimage, 66:402–411, 2013.

[3] Nick Taubert, Michael Stettler, Ramona Siebert, Silvia Spadacenta, Louisa Sting, Peter Dicke, Peter Thier, and
Martin A Giese. Shape-invariant encoding of dynamic primate facial expressions in human perception. Elife,
10:e61197, 2021.

[4] Paul Ekman and Wallace V Friesen. Measuring facial movement. Environmental psychology and nonverbal
behavior, 1:56–75, 1976.

[5] Rachael E Jack, Wei Sun, Ioannis Delis, Oliver GB Garrod, and Philippe G Schyns. Four not six: Revealing
culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6):708,
2016.

[6] Gillian Rhodes, Susan Brennan, and Susan Carey. Identification and ratings of caricatures: Implications for mental
representations of faces. Cognitive psychology, 19(4):473–497, 1987.

10



Running Title for Header

[7] Yongsheng Gao, Maylor KH Leung, Siu Cheung Hui, and Mario W Tananda. Facial expression recognition
from line-based caricatures. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
33(3):407–412, 2003.

[8] Linda K Kaye, Stephanie A Malone, and Helen J Wall. Emojis: Insights, affordances, and possibilities for
psychological science. Trends in cognitive sciences, 21(2):66–68, 2017.

[9] Jiayin Zhao, Qi Meng, Licong An, and Yifang Wang. An event-related potential comparison of facial expression
processing between cartoon and real faces. PLoS One, 14(1):e0198868, 2019.

[10] Shu Zhang, Xinge Liu, Xuan Yang, Yezhi Shu, Niqi Liu, Dan Zhang, and Yong-Jin Liu. The influence of key
facial features on recognition of emotion in cartoon faces. Frontiers in psychology, 12:687974, 2021.

[11] Susan G Wardle, Jessica Taubert, Lina Teichmann, and Chris I Baker. Rapid and dynamic processing of face
pareidolia in the human brain. Nature communications, 11(1):4518, 2020.

[12] Robert Geirhos, Carlos R Medina Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A Wichmann.
Generalisation in humans and deep neural networks. arXiv preprint arXiv:1808.08750, 2018.

[13] Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and Philip J Kellman. Local features and global shape
information in object classification by deep convolutional neural networks. Vision research, 172:46–61, 2020.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Gillian Rhodes and David A Leopold. Adaptive norm-based coding of face identity. The Oxford handbook of face
perception, pages 263–286, 2011.

[16] David A Leopold, Igor V Bondar, and Martin A Giese. Norm-based face encoding by single neurons in the
monkey inferotemporal cortex. Nature, 442(7102):572–575, 2006.

[17] Kenji W Koyano, Adam P Jones, David BT McMahon, Elena N Waidmann, Brian E Russ, and David A Leopold.
Dynamic suppression of average facial structure shapes neural tuning in three macaque face patches. Current
Biology, 31(1):1–12, 2021.

[18] Martin A Giese and David A Leopold. Physiologically inspired neural model for the encoding of face spaces.
Neurocomputing, 65:93–101, 2005.

[19] Le Chang and Doris Y Tsao. The code for facial identity in the primate brain. Cell, 169(6):1013–1028, 2017.

[20] Winrich A Freiwald and Haruo Hosoya. Neuroscience: A face’s journey through space and time. Current Biology,
31(1):R13–R15, 2021.

[21] Michael Stettler, Nick Taubert, Tahereh Azizpour, Ramona Siebert, Silvia Spadacenta, Peter Dicke, Peter Thier,
and Martin A Giese. Physiologically-inspired neural circuits for the recognition of dynamic faces. In International
Conference on Artificial Neural Networks, pages 168–179. Springer, 2020.

[22] Ali Mollahosseini, Behzad Hasani, and Mohammad H Mahoor. Affectnet: A database for facial expression,
valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 10(1):18–31, 2017.

[23] PLC Courville, A Goodfellow, IJM Mirza, and Y Bengio. Fer-2013 face database. Universit de Montreal:
Montréal, QC, Canada, 2013.

[24] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and Iain Matthews. The extended
cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In 2010 ieee
computer society conference on computer vision and pattern recognition-workshops, pages 94–101. IEEE, 2010.

[25] Manuel G Calvo and Daniel Lundqvist. Facial expressions of emotion (kdef): Identification under different
display-duration conditions. Behavior research methods, 40(1):109–115, 2008.

[26] Deepali Aneja, Alex Colburn, Gary Faigin, Linda Shapiro, and Barbara Mones. Modeling stylized character
expressions via deep learning. In Asian conference on computer vision, pages 136–153. Springer, 2016.

[27] Radu Tudor Ionescu, Marius Popescu, and Cristian Grozea. Local learning to improve bag of visual words model
for facial expression recognition. In Workshop on challenges in representation learning, ICML. Citeseer, 2013.

[28] Mariana-Iuliana Georgescu, Radu Tudor Ionescu, and Marius Popescu. Local learning with deep and handcrafted
features for facial expression recognition. IEEE Access, 7:64827–64836, 2019.

[29] Panagiotis Giannopoulos, Isidoros Perikos, and Ioannis Hatzilygeroudis. Deep learning approaches for facial
emotion recognition: A case study on fer-2013. Advances in Hybridization of Intelligent Methods: Models,
Systems and Applications, pages 1–16, 2018.

11



Running Title for Header

[30] Ben Niu, Zhenxing Gao, and Bingbing Guo. Facial expression recognition with lbp and orb features. Computa-
tional Intelligence and Neuroscience, 2021:1–10, 2021.

[31] Abubakar M Ashir, Alaa Eleyan, and Bayram Akdemir. Facial expression recognition with dynamic cascaded
classifier. Neural Computing and Applications, 32:6295–6309, 2020.

[32] Hang Zhao, Qing Liu, and Yun Yang. Transfer learning with ensemble of multiple feature representations. In 2018
IEEE 16th international conference on software engineering research, management and applications (SERA),
pages 54–61. IEEE, 2018.

[33] Xiaoqing Wang, Xiangjun Wang, and Yubo Ni. Unsupervised domain adaptation for facial expression recognition
using generative adversarial networks. Computational intelligence and neuroscience, 2018, 2018.

[34] Roger Blanco I Ribera, Eduard Zell, John P Lewis, Junyong Noh, and Mario Botsch. Facial retargeting with
automatic range of motion alignment. ACM Transactions on graphics (TOG), 36(4):1–12, 2017.

[35] Bindita Chaudhuri, Noranart Vesdapunt, and Baoyuan Wang. Joint face detection and facial motion retargeting for
multiple faces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9719–9728, 2019.

[36] Wouter M Kouw and Marco Loog. A review of domain adaptation without target labels. IEEE transactions on
pattern analysis and machine intelligence, 43(3):766–785, 2019.

[37] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and
Philip Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE Transactions on Knowledge
and Data Engineering, 2022.

[38] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples: A survey on
few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020.

[39] Thomas Vetter and Nikolaus F Troje. A separate linear shape and texture space for modeling two-dimensional
images of human faces. 1995.

[40] Thomas Vetter, Michael J Jones, and Tomaso Poggio. A bootstrapping algorithm for learning linear models of
object classes. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 40–46. IEEE, 1997.

[41] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, pages 187–194, 1999.

[42] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning a model of facial shape and
expression from 4d scans. ACM Trans. Graph., 36(6):194–1, 2017.

[43] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian
Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al. 3d morphable face models—past, present, and
future. ACM Transactions on Graphics (TOG), 39(5):1–38, 2020.

[44] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment problem?
(and a dataset of 230,000 3d facial landmarks). In International Conference on Computer Vision, 2017.

[45] Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann. Real-time facial surface
geometry from monocular video on mobile gpus. arXiv preprint arXiv:1907.06724, 2019.

[46] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quantifying
interpretability of deep visual representations. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 6541–6549, 2017.

[47] J Kubilius, M Schrimpf, A Nayebi, D Bear, DLK Yamins, and JJ DiCarlo. Cornet: Modeling the neural
mechanisms of core object recognition. biorxiv, 408385, 2018.

[48] Yuan Luo, Cai-ming Wu, and Yi Zhang. Facial expression recognition based on fusion feature of pca and lbp with
svm. Optik-International Journal for Light and Electron Optics, 124(17):2767–2770, 2013.

[49] Quan T Ngo and Seokhoon Yoon. Facial expression recognition based on weighted-cluster loss and deep transfer
learning using a highly imbalanced dataset. Sensors, 20(9):2639, 2020.

[50] Zhengyao Wen, Wenzhong Lin, Tao Wang, and Ge Xu. Distract your attention: Multi-head cross attention network
for facial expression recognition. CoRR, abs/2109.07270, 2021.

[51] Zengqun Zhao, Qingshan Liu, and Feng Zhou. Robust lightweight facial expression recognition network with
label distribution training. In AAAI Conference on Artificial Intelligence, 2021.

[52] Shervin Minaee, Mehdi Minaei, and Amirali Abdolrashidi. Deep-emotion: Facial expression recognition using
attentional convolutional network. Sensors, 21(9):3046, 2021.

12



Running Title for Header

[53] Jiawei Chen, Janusz Konrad, and Prakash Ishwar. Vgan-based image representation learning for privacy-preserving
facial expression recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 1570–1579, 2018.

[54] Vittorio Caggiano, Falk Fleischer, Joern K Pomper, Martin A Giese, and Peter Thier. Mirror neurons in monkey
premotor area f5 show tuning for critical features of visual causality perception. Current Biology, 26(22):3077–
3082, 2016.

[55] Marcelo G Mattar, David A Kahn, Sharon L Thompson-Schill, and Geoffrey K Aguirre. Varying timescales of
stimulus integration unite neural adaptation and prototype formation. Current Biology, 26(13):1669–1676, 2016.

13


	1 Introduction
	2 Background
	3 Multi-Domain Norm-Referenced Encoding
	4 Related Work
	5 Model Architecture
	5.1 Norm-Referenced Encoding and Classifier

	6 Results
	6.1 BFS Dataset
	6.2 Domain Generalisation
	6.3 Analogous Encoding
	6.4 Efficient Learning

	7 Conclusion

